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where  denotes E,. Since the integral equation (12) is obtained
by discarding those terms smaller by a factor of order oA, it is
reasonable to expect that the relative errors in both the eigen-
value B and the eigenfunction ¢ are of the same order. (Based on
a perturbation theory, a proof of such relations has been given
for the standard eigenvalue problem in the matrix form [14].)

In the case where { E, ) is much greater than (E, ), such as in a
mode excited by an x-polarized wave, it is found from (6) that, in
general, the ratio between the magnitudes of the three Cartesian
components is

E,:E:E,~1:0(a/b):0(a™). (132)
From the relation v X E = — jop,H, one can find that
B
Hy=mEx{1+0[a2A]}. (13b)

Then, H, satisfies (12), under the same order of inaccuracy. The
arguments made above can be given for E, by simply interchang-
ing the subscripts x and y. In summary, (12) is valid for the
transverse Cartesian components, E,, E,, H, , and H,, whereas

»?
it does not hold for the axial components E. and H,. On
applying the operator (V2 — y2) to both sides of (12), we obtain
(3), the differential equation in the scalar form.

IV. CONCLUSIONS

From the electric field integral equation a quantitative analysis
of the effect of polarization charge has been given. It is found
that the error due to the scalar approximation (neglecting the
polarization charge) is proportional to the difference A, regard-
less of the functional behavior of the profile P. Physically, this
fact is accounted for by noting that, so long as the difference A is
kept small, a rapidly varying permittivity distribution leads to
closely clustered polarization charge (positive or negative); hence
the polarization effect is weakened due to self-cancellation. We
have conducted many calculations for a circular fiber (using the
method in [15]), and all the results support the conclusion.
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Saturation of the SIS Mixer by Out-of-Band Signals
LARRY R. D’ADDARIO

Abstract —The tendency of SIS mixers to saturate at low input signal
levels is shown to depend on the total signal voltage across the junction,
including frequency components outside the band of interest. If large
dynamic range is fo be achieved, mixers should be designed with embed-
ding networks that present low impedances to the junction at out-of-band
frequencies.

I. INTRODUCTION

SIS (superconductor—insulator—superconductor tunnel junc-
tion) mixers allow the construction of very sensitive receivers at
millimeter wavelengths, but the dynamic range of such receivers
may be limited because of mixer saturation at low input powers.
This has long been recognized as a significant problem [1]-[5],
and approximate formulas have been presented for the input
power at which departure from linear operation begins [1], [2].
Reports of experimental mixers often include measurements of
this saturation power (e.g. [4], [5]). However, nearly all of this
theoretical and experimental work has considered only a mono-
chromatic input signal. In practice, it is often necessary for the
receiver to accept a broad-band noise signal, such as thermal
noise at room temperature. For example, strong noise sources are
often used to calibrate the gain of the receiver and to determine
its noise temperature; unless it can be assured that the receiver
remains linear for these signals, the calibration will be in error.
We will show here that it is inaccurate to assume that the
saturation noise temperature T, for broad-band signals will be
such that P, = kT, B, where P, is the saturation power mea-
sured for monochromatic signals and B is the receiver’s band-
width. This is because the broad-barnd signal contains power well
outside this bandwidth, and, unless special precautions are taken,
an SIS mixer will begin saturating because of the out-of-band
signals well before the in-band power reaches P,

at
II. APPROXIMATE ARGUMENT

An argument explaining the saturation mechanism of SIS
mixers was first put forward by Smith and Richards [1], and later
developed into an explicit formula [2]. The idea is that the
small-signal gain of the mixer is a function of its dc bias, and
reaches local maxima at certain voltages (photon peaks) where
the mixer is normally operated. If the output frequency (IF) is
low, then the output signal voltage may be considered a perturba-
tion of the bias voltage, so that the instantaneous gain varies over
the IF cycle. As the signal voltage gets large, the average gain is
reduced from the peak. The embedding impedances required for
low-noise, high-gain operation of ar SIS mixer are such that the
largest signal voltage is likely to occur at the IF, in which case
this argument gives a fair description of the saturation mecha-
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nism. The onset of saturation can be estimated quantitatively if
the gain-versus-bias function is known; this can be found from
the small-signal theory, which can then be used to relate the IF
signal voltage to the input signal power [2].

More generally, the onset of saturation occurs when the total
signal voltage (at all frequencies) appearing across the SIS junc-
tion can no longer be treated as a small perturbation of the dc
bias and local oscillator voltages. A quantitative treatment of this
is extremely difficult, even with some simplifying assumptions.
However, it is easy to sec that the voltage due to out-of-band
signals can exceed that due to in-band signals in practical cases.
Suppose that the mixer’s RF bandwidth (frequency range over
which the RF source impedance seen by the junction is nearly
constant) exceeds the IF bandwidth (constant load impedance),
and that the RF source has constant noise temperature. Then the
IF voltage spectrum will follow the IF load impedance, which
can easily be an open circuit at some out-of-band frequencies.
Typically, the junction is connected by a 50-Q transmission line
to an IF amplifier whose input impedance is nominally 50 £ over
its design bandwidth, but is mainly reactive outside this band-
width. If the transmission line is at least a few cm long, then the
phase of the reflection coefficient seen by the junction will vary
by 27 over a few GHz. Since the RF bandwidth of SIS mixers
typically exceeds a few GHz, the largest spectral voltages appear-
ing across the junction are likely to be at those out-of-band IF’s
where the load impedance is nearly an open circuit.

This problem can be avoided by a circuit design that is not
typical of SIS receivers so far built. If a bandpass filter covering
the desired IF band is placed very close to the SIS junction (at a
distance small compared to v/Bgry. where v is the local propa-
gation velocity and Byy is the RF bandwidth), and if the filter is
designed to provide low out-of-band input impedance (shunt
input resonator), then the out-of-band voltage can be kept small.

III. ANALYSIS BASED ON QUANTUM MIXING THEORY

The quantum mixing theory of Tucker [6] begins with an
expression for the total current in an SIS junction induced by any
applied time-varying voltage, and proceeds by letting the voltage
be

ey

where ¥V, is the dc bias, ¥} is the amplitude of the (large) local
oscillator at frequency f;, and v, (¢) is the (small) signal of
interest. The response can be analyzed for a monochromatic
signal by letting

V(t) =V, +V,cos2af t +v,(t)

o0

p()= X

m=—c0

(2

v,cos(2af t+6,)

where f,, = mf; + f, for output frequency f,, and where one of
the terms is due to the input signal source and the others are
mixing products. If all of the amplitudes {v,, } are sufficiently
small, then several simplifications are possible. First, the total
current induced by the signal voltages can be computed as the
superposition of the current induced by each, because second-
order mixing (cross products) can be neglected. Second, the
amplitude of the current i, at frequency f, induced by the
voltage term at frequency f,, can be expanded as a Taylor series
in v, with all but the first-degree term being negligible. And
third, the addition of another small voltage at a frequency not in
{f.) (an “out-of-band” frequency) will not affect the induced
current at any frequency in { f,, }. These first two facts allow the
pumped junction to be treated as a linear network with admit-
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tance matrix elements Y,, =i,/u,, and the third fact allows
out-of-band frequencies to be neglected.

It is possible to relax the small-signal assumption, but the
complete analysis of the SIS mixer performance then becomes
very difficult. Nevertheless, an analytical demonstration of the
effects of large signals can be made using the equations of the
quantum tunneling theory. We will compute only the current
induced in the junction for given signal voltages, without regard
for the external circuit. It will be seen that large out-of-band
signal voltages can affect the in-band currents by two mecha-
nisms, and that these mechanisms are in addition to the nonlin-
earity of in-band current versus in-band voltage; the latter is the
only saturation mechanism applicable to the monochromatic case
considered by earlier authors.

If we now use

o0

o()= ¥

m=—00

[Um cos(2af, t+ ¢,)+ v, cos(2mft+ qb,’,,)]

(3)
in (1), where f,, is an in-band frequency and f = mf, + f/ is an
out-of-band frequency, then it is shown in the Appendix that the
junction current can be written

(1) = Re; ;J/(“L)J/'(“L)I;I z.: kZ/Jk,,,(am)Jk{,,(am)

3 Z‘]pm( ) Jp;,,( o) e 2Lt Skt 8pm )1
Pn P

e Ohmbn O I(fy 1+ [kt + 2 (4)
where a; =gV /hfy. &, =qu,/Hf,, &, =qu,/f,, q is the
electronic charge, 4 is Planck’s constant, J, is the kth-order
Bessel function of the first kind, and [(f) is the analytic signal
associated with the dc current-voltage characteristic of the junc-
tion (see the Appendix for a precise definition). The limits of the
product and of all sums in (4) are — 0 to 0, and 8/=/-/,
ok, =k, —k,, 8p,=p,— p.,. This result is derived from the
general formula of quantum tunneling theory [6] without assum-
ing that the amplitudes v,, and vy, are small.

Although (4) appears to be quite complicated, its essential
features are these: the time variation is contained in complex
exponentials at each possible mixing frequency of the constituent
ac voltages, and the amplitude of the current at each frequency is
given by a sum of Bessel functions of the voltage amplitudes
along with samples of the (analytic signal of) the dc I-V curve.

Careful study of (4) leads to the following conclusions. The
first is that first-order mixing terms, i.e., those resulting from any
harmonic of the (large) LO signal and the fundamental frequency
of one of the small-signal factors, have an amplitude whose
lowest order term is proportional to Jy(a,,)J;(a,,) =%a,, (1~
a2 + 0(a?). These terms include the desired mixing products.
The second conclusion is that if all out-of-band voltages are zero,
the factors involving them are unity; if not, then those factors
reduce the amplitude of the first-order mixing terms by J,(a},)?
=1-1ta/2 4+ O(a/}). This factor is of the same order as the
nonlinear factor resulting from the in-band signals; thus, an
out-of-band voltage causes the same amount of saturation of the
in-band gain as would an in-band voltage of the same amplitude.
If the out-of-band voltage is larger, perhaps because the embed-
ding impedance is larger at that frequency, then it will be the
dominant cause of saturation. The third conclusion is that for
certain choices of the out-of-band IF f/, higher order mixing
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products involving the out-of-band signals can appear in-band.
For example, if f; = f, /2, then the second harmonic (a second-
order product) has this property. For broad-band signals such as
thermal noise, second-order intermodulation products of this
type are incoherent with the desired signals and therefore appear
as an increase in noise at high signal levels, rather than as a
reduction in gain (saturation). However, third-order (and higher
odd-order) mixing products can be coherent and can contribute
to the saturation. This can be expected to be much less important
than the effects noted in the first and second conclusions.

The use of (4) to analyze fully a given junction and embedding
network is especially difficult. It is necessary to solve for the
voltages and currents at all frequencies simultaneously, given the
(linear) constraints imposed by the embedding network. The
situation can be simplified by considering only the three-port
model, where the embedding network presents a short circuit at
all frequencies f,,,f, for which |m|>1; this leaves nonzero
voltages at six frequencies, three in-band and three out-of-band.
A further simplification would be to neglect all but first-order
mixing products. A solution might then be obtained iteratively by
first using the small-signal ¥ matrix to find the approximate
signal voltages, then using these in (4) to estimate the currents,
then using the currents in the embedding network to obtain
improved approximations to the voltages, and repeating until
convergence. This still would not treat the broad-band noise case.
It remains a difficult calculation, and the author intends to
pursue it in a future publication.

IV. CONCLUSIONS

It has been demonstrated by both analysis and intuitive argu-
ment that gain saturation in an SIS mixer results when the total
signal voltage across the junction becomes too large. It is empha-
sized that this includes voltages at frequencies outside the bands
of interest of the mixer, such as arise when the input is broad-band
noise. To obtain the largest dynamic range, the designer must
ensure that the embedding network suppresses such voltages. The
network can do this by approaching a short circuit at out-of-band
frequencies. In high-gain mixers, the largest voltages normally
occur at the output frequency (IF); in such cases, a carefully
designed IF filter can significantly improve the dynamic range.

APPENDIX

For an arbitrary time function of applied voltage V(1) =V, +
V.. (1), the expected value of current in a tunnel junction is given

by [7]
I( t) — 2RC{ ft IFT (t__ t/) elZﬂ(q/h)f;{Vac(‘r)d‘r dt’} (Al)
— o0

where Ipp(#) is the Fourier transform of the dc current-voltage
characteristic of the junction I, (V) with respect to transform
variable f = g(V —V,.)/h:

Ier(D) = [ Lo(sc+ W/q)e " df.

This formula can be easily derived from [6, egs. (2.8), (2.11), and
(2.16)]. Then if V(1) is given by using (3) in (1), (A1) becomes

(A2)

1(:)=2Re<f’ Ier (1= ) F(ay,0,f,, 1, 1)

I F(am,¢m,fm,z,t'>F<a:n,¢:n,f,;,z,t')dt'} (A3)

m= — o0
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where

Flas fit)= Y % Jla)(e)

k=-—00 k'=—-0o

_el(k-—k')(2‘n'ft+¢)elz'lrk'f(t-—t')' ([\4)

This result follows from carrying out the integral in the exponent
of (Al) and using the identity

elesnx o i Jk(a) ezkx.

k=-o

(A3)

Each term of the integrand of (A3) contains Ipp(¢— t') and an
exponential factor involving ¢— ¢, but all other factors are
constant; carrying out this integral then leaves (4). The function
I(f), used in (4), is the analytic signal of I, (V. + hf/q), given
by

i(f)=2 fo P L (1) e s, (A6)
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Variational Bound Analysis of a Discontinuity in
Nonradiative Dielectric Waveguide

J. C. OLIVIER, STUDENT MEMBER, IEEE, AND
J. A. G. MALHERBE, SENIOR MEMBER, IEEE

Abstract —This paper describes the application of the variational bound
method to nonradiative dielectric waveguide for the analysis of scattering
by a dielectric obstacle, in this case a rectangular, air-filled discontinuity in
the dielectric center strip. Closed-form equations are obtained that can be
used directly in the design of networks using reactive components, such as
filters. Measured data agree well with the theoretical calculations.

1. INTRODUCTION

The application of specific properties of discontinuities in
waveguides forms the basis of a variety of microwave devices. In
the nonradiative dielectric waveguide only one such analysis has
been reported, by Yoneyama et al. [1], where a step discontinuity
was described and applied in the design of a filter. Expressions
for describing the network are not given.

In this paper, the variational bound (VB) method described by
Aronson et al. [2] is used to analyze the scattering from a
rectangular hole through the dielectric center conductor of the
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