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where + denotes EX. Since the integral equation (12) is obtained

by discarding those terms smaller by a factor of order a2A, it is

reasonable to expect that the relative errors in both the eigen-

value ~ and the eigenfunction ~ are of the same order. (Based on

a perturbation theory, a proof of such relations has been given

for the standard eigenvalue problem in the matrix form [14].)

In the case where ( EX) is much greater than ( EY), such as in a

mode excited by an x-polarized wave, it is found from (6) that, in

general, the ratio between the magnitudes of the three Cartesian

components is

EX:EZ:EY =l:O(a@:O(a2A). (13a)

From the relation v x E = – jupOH, one can find that

Hy=— ~& EX{l+0[rx2A]}. (13b)

Then, H, satisfies (12), under the same order of inaccuracy. The

arguments made above can be given for ~, by simply interchang-

ing the subscripts x and y. In summary, (12) is valid for the

transverse Ckirtesian components, EX, l~v, HX, and H,,, whereas

it does not hold for the axiaf components E, and H=. On

applying the operator ( vcz – y2 ) to both sides of (12), we obtain

(3), the differential equation in the scalar form.

IV. CONCLUSIONS

From the electric field integral equation a quantitative analysis

of the effect of polarization charge has been given. It is found

that the error due to the scalar approximation (neglecting the

polarization charge) is proportional to the difference A, regard-
less of the functional behavior of the profile P. Physically, this

fact is accounted for by noting that, so long as the difference A is

kept small, a rapidly varying permittivity distribution leads to

closely clustered polarization charge (positive or negative); hence

the polarization effect is weakened due to self-cancellation. We

have conducted many calculations for a circular fiber (using the

method in [15]), and all the results support the conclusion.
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Saturation of the S1S Mixer by Out-of-Band Sigmalls

LARRY R. D’ADDAR1O

,@tract —The tendency of S1S mixers to satnrate at low input signal

levels is shown to depend on the total signal voltage across the junction,

including frequency components outside the band of interest. If large

dynamic range is i-o be achieved, mixers should be designed with embedd-

ing networks that present low impedances to the junction at out-of-band

frequencies.

I. INTRODUCTION

S1S (superconductor-insulator–superconductor tunnel junc-

tion) mixers allow the construction of very sensitive receivers at

millimeter wavelengths, but the dynamic range of such receivers

may be limited because of mixer saturation at low input powers.

This has long been recognized as a, significant problem [1]-[5],

and approximate formulas have been presented for the input

power at which departure from linear operation begins [11, [2].

Reports of experimental mixers often include measurements of

this saturation power (e.g. [4], [5]). However, nearly all of this

theoretical and experimental work has considered only a mono-

chromatic input signal. In practice, it is often necessary for the

receiver to accept a broad-band noise signal, such as thermal

noise at room temperature. For example, strong noise sources are

often used to calibrate the gain of the receiver and to determine

its noise temperature; unless it can be assured that the receiver

remains linear for these signals, the calibration will be in error.

We will show lhere that it is inaccurate to assume that the

saturation noise temperature T,at for broad-band signals will be

such that P,=t = kTS~tB, where P,at is the saturation power mea-
sured for monochromatic signals and B is the receiver’s band-
width. This is because the broad-band signal contains power well
outside this bandwidth, and, unless special precautions are taken,
an S1S mixer will begin saturating because of the out-of-lband
signals well before the in-band power reaches P,at.

II. APPROXIMATE ARGUMENT

An argument explaining the saturation mechanism of S1S
mixers was first put forward by Smith and Richards [1], and later
developed into an explicit formula [2]. The idea is that the
small-signal gain of the mixer is a function of its dc bias, and
reaches local maxima at certain voltages (photon peaks) where
the mixer is normally operated. If the output frequency (IF) is
low, then the output signal voltage may be considered a perturba-
tion of the bias voltage, so that the instantaneous gain varies over
the IF cycle. As the signal voltage sets large, the average gain is
reduced from the peak. The embedding impedances required for
low-noise, high-gain operation of an S1Smixer are such that the
largest signaf voltage is likely to occur at the IF, in which case
this argument gives a fair description of the saturation mecha-
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nism. The onset of saturation can be estimated quantitatively if

the gain-versus-bias function is known; this can be found from

the small-signaf theory, which can then be used to relate the IF

signaf voltage to the input signal power [2].

More generally, the onset of saturation occurs when the total

signaf voltage (at all frequencies) appearing across the S1S junc-

tion can no longer be treated as a small perturbation of the dc

bias and local oscillator voltages. A quantitative treatment of this

is extremely difficult, even with some simplifying assumptions.

However, it is easy to see that the voltage due to out-of-band

signals can exceed that due to in-band signals in practicaf cases.

Suppose that the mixer’s RF bandwidth (frequency range over

which the RF source impedance seen by the junction is nearly

constant) exceeds the IF bandwidth (constant load impedance),

and that the RF source has constant noise temperature. Then the

IF voltage spectrum will follow the IF load impedance, which

can easily be an open circuit at some out-of-band frequencies.

Typically, the junction is connected by a 50-fl transmission line

to an IF amplifier whose input impedance is nominally 500 over

its design bandwidth, but is mainly reactive outside this band-

width. If the transmission line is at least a few cm long, then the

phase of the reflection coefficient seen by the junction will vary

by 2 n over a few GHz. Since the RF bandwidth of S1S mixers

typically exceeds a few GHz, the largest spectral voltages appear-

ing across the junction are likely to be at those out-of-band IF’s

where the load impedance is nearly an open circuit.

This problem can be avoided by a circuit design that is not

typicaf of S1S receivers so far built. If a bandpass filter covering

the desired IF band is placed very close to the S1S junction (at a

distance small compared to v/BR~, where v is the locaf propa-

gation velocity and BRP is the RF bandwidth), and if the filter is

designed to provide low out-of-band input impedance (shunt

input resonator), then the out-of-band voltage can be kept small.

III. ANALYSIS BASED ON QUANTUM MIXING THEORY

The quantum mixing theory of Tucker [6] begins with an

expression for the totaf current in an S1S junction induced by any

applied time-varying voltage, and proceeds by letting the voltage

be

v(t) = J& + vLcos27rf~t+ v,(t) (1)

where vdC is the dc bias, ~L is the amplitude of the (large) local

oscillator at frequency fL, and v,(t) is the (small) signal of

interest. The response can be analyzed for a monochromatic

signal by letting

v,(t) = : umcos(2fifmt++m) (2)
~=. *

where f~ = mfL + fO for output frequency f., and where one of

the terms is due to the input signal source and the others are

mixing products. If all of the amplitudes { u~ } are sufficiently

small, then severaf simplifications are possible. First, the total

current induced by the signal voltages can be computed as the

superposition of the current induced by each, because second-

order mixing (cross products) can be neglected. Second, the

amplitude of the current i. at frequency ~. induced by the

voltage term at frequency fM can be expanded as a Taylor series

in v~ with all but the first-degree term being negligible. And

third, the addition of another small voltage at a frequency not in

{ ~~ } (an “out-of-band” frequency) will not affect the induced

current at any frequency in { f~ }. These first two facts allow the
pumped Junction to be treated as a linear network with admit-

tance matrix elements Y~~ = i. /vM, and the third fact allOWS

out-of-band frequencies to be neglected.

It is possible to relax the small-signal assumption, but the

complete analysis of the S1S mixer performance then becomes

very difficult. Nevertheless, an analytical demonstration of the

effects of large signals can be made using the equations of the

quantum tunneling theory. We will compute only the current

induced in the junction for given signal voltages, without regard

for the external circuit. It will be seen that large out-of-band

signaf voltages can affect the in-band currents by two mecha-

nisms, and that these mechanisms are in addition to the nordin-

earity of in-band current versus in-band voltage; the latter is the

only saturation mechanism applicable to the monochromatic case

considered by earlier authors.

If we now use

v,(t) = f [vmcos(27rfmt ++m)+v~cos(27rfJt +&)]
~.—~

(3)

in (1), where f~ i,s an in-band frequency and f: = mfL + fO’ is an

out-of-band frequency, then it is shown in the Appendix that the
junction current can be written

I(j) =Re~~J(aL)J(a L)~~~Jkm(am)JkA(am)
IIJ m km k~

“ z zJpm(a;)JpL(a&)e“”(’’fL+’kmfm+ ’pmf~)’
Pm Pk

. #cMn& +c$p)AJ~( fL1’+ f~k~ + f:p~) (4)

where a= = qV~/hf~, am = qvm/hfn, a~ = qv~/hf~, q is the

electronic charge, h is Planck’s constant, J~ is the k th-order

Bessel function of the first kind, and ~(f) is the analytic signaf

associated with the dc current–voltage characteristic of the junc-

tion (see the Appendix for a precise definition). The limits of the

product and of all sums in (4) are – m to co, and 81=1 – 1’,

bkn, = km – k~, 8p~ = pm – p~. This result is derived from the

generaf formula of quantum tunneling theory [6] without assum-

ing that the amplitudes v~ and v~ are small.

Although (4) appears to be quite complicated, its essentiaf

features are these: the time variation is contained in complex

exponential at each possible mixing frequency of the constituent

ac voltages, and the amplitude of the current at each frequency is

given by a sum of Bessel functions of the voltage amplitudes

along with samples of the (analytic signal of) the dc 1– V curve.

Careful study of (4) leads to the following conclusions. The

first is that first-order mixing terms, i.e., those resulting from any

harmonic of the (large) LO signal and the fundamental frequency

of one of the small-signal factors, have an amplitude whose

lowest order term is proportional to JO(am )Jl(a~) = jam (1 –
~ a; + O ( a: )). These terms include the desired mixing products.

The second conclusion is that if all out-of-band voltages are zero,

the factors involving them are unity; if not, then those factors

reduce the amplitude of the first-order mixing terms by JO( a~ ) 2
= 1 – ~a~ + O(a~). This factor is of the same order as the

nonlinear factor resulting from the in-band signals; thus, an

out-of-band voltage causes the same amount of saturation of the

in-band gain as would an in-band voltage of the same amplitude.

If the out-of-band voltage is larger, perhaps because the embed-

ding impedance is larger at that frequency, then it will be the

dominant cause of saturation. The third conclusion is that for

certain choices of the out-of-band IF f~, higher order mixing
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products involving the out-of-band signals can appear in-band.
For example, if f; = fO/2, then the second harmonic (a second-
order product) has this property. For broad-band signals such as
thermal noise, second-order intermodulation products of this
type are incoherent with the desired signals and therefore appear
as an increase in noise at high signal levels, rather than as a
reduction in gain (saturation). However, third-order (and higher
odd-order) mixing products can be coherent and cart contribute
to the saturation. This can be expected to be much less important
than the effects noted in the first and second conclusions.

The use of (4) to analyze fully a given junction and embedding
network is especially difficult. It is necessary to solve for the
voltages and currents at all frequencies simultaneously, given the
(linear) constraints imposed by the embedding network. The
situation can be simplified by considering only the three-port
model, where the embedding network presents a short circuit at
all frequencies ~~, ~~ for which [ml> 1.; this leaves nonzero

voltages at six frequencies, three in-band and three out-of-band.

A further simplification would be to neglect all but first-order

mixing products. A solution might then be obtained iteratively by
first using the small-signal Y matrix to find the approximate
signal voltages, then using these in (4) to estimate the currents,
then using the currents in the embedding network to obtain

improved approximations to the voltages, and repeating until

convergence. This still would not treat the broad-band noise case.

It remains a difficult calculation, and the author intends to

pursue it in a future publication.

IV. CONCLUSIONS

It has been demonstrated by both analysis and intuitive argu-

ment that gain saturation in an S1S mixer results when the total

signal voltage across the junction becomes too large. It is empha-

sized that this includes voltages at frequencies outside the bands

of interest of the mixer, such as arise when the input is broad-band

noise. To obtain the largest dynamic range, the designer must

ensure that the embedding network suppresses such voltages. The

network can do this by approaching a short circuit at out-of-band

frequencies. In high-gain mixers, the largest voltages normally

occur at the output frequency (IF); in such cases, a carefully

designed IF filter can significantly improve the dynamic range.

APPENDIX

For an arbitrary time function of applied voltage V(t)= UC +
V,C( t), the expected value of current in a tunnel junction is given
by [7]

{ )
1(t) = 2Re ~’ Im ( t – t’) e’2”fq/k)~v’C(’)dT dt’ (Al)

—m

where Z~~ ( t) is the Fourier transform of the dc current–voltage

characteristic of the junction ldC( ~) with respect to transform

variable f = q( v – V~C)/h:

~FT( ~) =/m ~dc( KC + hf/q) e-’z”f’ df. (A2)
—ccl

This formula can be easily derived from [6, eqs. (2.8), (2.11), and

(2.16)]. Then if V’(t) is given by using (3) in (l), (Al) becomes

(
Z(t) =2Re ~’ IFT(t–t’)J’( aL, O, fL, ~,~’)

—w

}
R F(am, +m,fm, t,t’)F(a~, +~,f; ,t, t’)dt’ (A3)

m=—ce

where

F(a, @,f,t, t’) = ~ f Jk(a)Jkj(a)
k=–mk’=–cc

. e’(~-~’)(’nf’+~)e’’m~ ’f(’-”). (A4)

This result follows from carrying out the integraf in the exponent

of (Al) and using the identity

eiusmx ~
~ J,(a)e”x. (As)

k=–oc

Each term of the integrarnd of (A3) cmtains IFT(t – t’) and art

exponential factor involving t – t‘, but all other factors at-e

constant; carrying out this integral then leaves (4). The function

~(f), used in (4), is the analytic signa~ of Id= ( I& + lrf/q), given

by
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Variational Bound Analysis of a Discontinuity in

Nonradiative Dielectric Waveguide

J. C. OLIVIER, STUDENTMEMBER,IEEE,AND
J. A. G. MALHERBE, SENIORMEMBER,IEEE

,4/ntract —Tfds paper deseribes the application of the variational bound

method to nonradlative dielectric waveguide for the analysis of scattering

by a dielectric obstacle, in this case a rectau~prlar, air-filled discontinuity in

the dielectric center strip. Closed-form equations are obtained that can be

used directly in the design of networks usinf~ reactive components, such as

filters. Measured data~ agree well with the theoretical calculations.

I. INTRODUCTION

The application of specific properties of discontinuities in

wavegnides forms the basis of a variety of microwave devices. In

the nonradiative dielectric waveguide only one such analysis has

been reported, by Yoneyama et al. [1], where a step discontinuity

was described and applied in the design of a filter. Expressicms

for describing the network are not given.

In this paper, the variational bound (VB) method described by

Aronson et al. [2] is used to analyze the scattering from a

rectangular hole through the dielectric center conductor of the
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